
Microservices and DevOps

Scalable Microservices
Microservices – the Extended Edition

Henrik Bærbak Christensen

Software Reuse

• If only we could build software from reusable components

• A big struggle throughout

the history of computing

CS@AU Henrik Bærbak Christensen 2

Software Reuse

• During the early 90’ies the Lego bricks metaphor was

often used for object/component reuse

• However, the golden future of a world wide component

market place sort of deflated

Vendor Lock-in

Software Reuse

• In the 00’ the web exploded and allowed a different

deployment model

– Component based reuse:

• A static / module viewpoint - get a DLL/jar file

• “libraries” in [Lewis et al. 2014]

– Linked in, and called by in-memory function calls

– Service oriented architecture:

• A dynamic / C&C viewpoint - connect to a service

• “services” in [Lewis et al. 2014]

– Out-of-process, communicate using RPC or web service

CS@AU Henrik Bærbak Christensen 4

SOA

• Wikipedia

– A service-oriented architecture (SOA) is an architectural pattern

in computer software design in which application components

provide services to other components via a communications

protocol, typically over a network. The principles of service-

orientation are independent of any vendor, product or technology.

• MacKenzie et al., 2006

– is a paradigm for organizing and utilizing distributed capabilities

that may be under the control of different ownership domains

– provides a uniform means to offer, discover, interact with and use

capabilities to produce desired effects consistent with measurable

preconditions and expectations

CS@AU Henrik Bærbak Christensen 5

Microservices

• The next step? A successful step?

• Wikipedia (2018)

• Keywords

– Loosely coupled, fine-grained, lightweight protocols, autonomous

teams, independent deployment and scaling, continuous delivery.

CS@AU Henrik Bærbak Christensen 6

So – Our Take

• We will look at two takes on the concept...

– James Lewis and Martin Fowler

– Sam Newman

• And compare ☺

CS@AU Henrik Bærbak Christensen 7

Lewis and Fowler

Micro Services

• The next step? A successful step?

CS@AU Henrik Bærbak Christensen 9

Overview

CS@AU Henrik Bærbak Christensen 10

Key Properties

CS@AU Henrik Bærbak Christensen 11

Component = Service

• Component = unit of software that is independently

replaceable and upgradeable...

• Services are the components of a microservice arch.

– Out-of-process, communicate using RPC or web service

– Independently deployable

• I.e. smaller units of deployment

– Explicit interface

• Leads to lower coupling

• Service is not necessarily single process…

– Often it is (app+db) deployed together…

CS@AU Henrik Bærbak Christensen 12

Organized around Business

• Classic Organization

CS@AU Henrik Bærbak Christensen 13

Microservice Organization

Products, not Projects

• Classic project organization

– Develop piece of software, upon completion, hand over to

maintenance, project dissolve...

• Product organization

– You build it, you run it

• That is the team designs, builds, tests, deploys, and maintains it...

– Full lifecycle ownership

CS@AU Henrik Bærbak Christensen 14

Smart endpoints, dumb pipes

• The logic lives in the services, not in the communication

– CC viewpoint: Smart Components, dumb Connectors

– Opposite:

• Enterprise service bus

– Allows filtering, processing, of messages while being transmitted

• Typical message protocols

– HTTP / REST Api’s

– Lightweight messaging

• RabbitMQ, etc., with no message processing

– GraphQL (?)

CS@AU Henrik Bærbak Christensen 15

Decentralized Governance

• Choice of language and technology stack is open

– Use C++ for that performant service; choose Node.js for a reports

service

– Opposite: Company-wide adoption of Microsoft tech stack

• Often companies adopt building useful tools for other

teams with similar problems

• Often companies do restrict tech stack though

– Netflix (as I recall) insists on JVM based tech stack only

CS@AU Henrik Bærbak Christensen 16

Decentralized Data Management

• Is decentralized

– Each service has its own storage

CS@AU Henrik Bærbak Christensen 17

Decentralized Data Management

• Is decentralized

– Each service has its own storage

CS@AU Henrik Bærbak Christensen 18

Decentralized Data Management

• Transaction handling is highly difficult in such a context

• Emphasis is on

eventual consistency

• SAGA pattern

• My humble opinion

– If you need transactions, why not use a DB that supports it?

CS@AU Henrik Bærbak Christensen 19

Infrastructure Automation

• Continous Delivery

– Deployment Pipeline: An automated implementation of your

application’s build, deploy, test, and release process.

CS@AU Henrik Bærbak Christensen 20

Agile Manifesto:
Highest priority is to satisfy the customer
through early and continuous delivery of

valuable software.

Infrastructure Automation

CS@AU Henrik Bærbak Christensen 21

One repo / multiple repos ?

… And Design for Failure!

CS@AU Henrik Bærbak Christensen 22

Nygard: Every remote call is an
integration point. Every

integration point must be guarded
to allow safe failure modes.

Evolutionary Design

• Key property of a component is the notion of independent

replacement and upgradeability.

• Build replaceable and upgradeable units, give opportunity

for more granular release planning

• Evolution through replacing/scraping individual service

rather than big replacements of whole monolith

CS@AU Henrik Bærbak Christensen 23

Newman

Definition

• Newman’s groundbreaking and highly precise definition.

CS@AU Henrik Bærbak Christensen 25

Microservices are small,
autonomous services that work together.

Budd (2002)

Defining Characteristics

• Small, focused on doing one thing well

– Service boundaries are business boundaries

– Explicit boundaries (out-of-process communication)

– Small enough and no smaller

• Boundary: team size, rewrite time

• Autonomous

– Separate entity

– Communication is network calls (avoid tight coupling) (hm...)

– Expose API (technology-agnostic)

– Decoupling: can I change this service without changing any

other?

CS@AU Henrik Bærbak Christensen 26

Key Benefits

• Technological Heterogenity

– Each service may use its own technology stack

• Pick the right tool for each job

– May choose data storage techology independently

– Quick technology adaption

• Lower risk by selecting new technology for given service

– Counterpoint

• Overhead in maintaining many technologies

• Company ‘Technology Decisions’ may restrict that

– NetFlix and Twitter: Only JVM based systems

CS@AU Henrik Bærbak Christensen 27

Key Benefits

• Resilience

– Nygard (2017) pattern: Bulkhead

– Bulkhead: Partitioning a system so

failures in one part does not lead to system failure

– Handle failure of services and degrade functionality accordingly

– Counterpoint

• Highly distributed systems have a lot of failure modes that needs to

be addressed

• Nygard’s book contains essential hard-earned tactics…

CS@AU Henrik Bærbak Christensen 28

Key Benefits

• Scaling

– Just scale the microservice that needs scaling

• Opposite monolith system: all things scale together

– Utilize on-demand provisioning of VMs to scale automatically

• Ease of Deployment

– A one-line bug fix in one service only means one service to

redeploy

• And rollback is also much easier

• Opposite monolith system: full redeployment of monolith

– Fear of breaking stuff => changes accumulate

CS@AU Henrik Bærbak Christensen 29

Key Benefits

• Organization Alignment

– Small teams on small service – align organization and

architecture

• Smaller teams on smaller code bases are more efficient

• Composability

– Functionality consumed in different ways for different purposes

• Uhum… I am a bit skeptical…

• Optimizing for Replacability

– Out of date services are easier to replace because its small size

• Opposite: That monster COBOL system everybody is afraid of...

CS@AU Henrik Bærbak Christensen 30

Comparison

Lewis vs Newman

CS@AU Henrik Bærbak Christensen 31

Overview

CS@AU Henrik Bærbak Christensen 32

Comparing

CS@AU Henrik Bærbak Christensen 33

Wikipedia keywords:
Loosely coupled, fine-grained,
lightweight protocols, autonomous
teams, independent deployment and
scaling, continuous delivery.

