/v

AARHUS UNIVERSITET

Microservices and DevOps

Scalable Microservices
Microservices — the Extended Edition

Henrik Baerbak Christensen

VeV Software Reuse

AARHUS UNIVERSITET
 If only we could build software from reusable components

« A big struggle throughout
the history of computing

CS@AU Henrik Baerbak Christensen 2

VeV Software Reuse

AARHUS UNIVERSITET

* During the early 90’ies the Lego bricks metaphor was
often used for object/component reuse

« However, the golden future of a world wide component
market place sort of deflated

V4V Software Reuse

AARHUS UNIVERSITET

* In the 00’ the web exploded and allowed a different
deployment model

— Component based reuse:
« Astatic / module viewpoint - get a DLL/jar file
« “libraries” in [Lewis et al. 2014]
— Linked in, and called by in-memory function calls
— Service oriented architecture:
« Adynamic / C&C viewpoint - connect to a service

» “services” in [Lewis et al. 2014]
— Out-of-process, communicate using RPC or web service

/v SOA
AARHUS UNIVERSITET
« Wikipedia
— A service-oriented architecture (SOA) is an architectural pattern

In computer software design in which application components
provide services to other components via a communications
protocol, typically over a network. The principles of service-
orientation are independent of any vendor, product or technology.

 MacKenzie et al., 2006
— Is a paradigm for organizing and utilizing distributed capabilities
that may be under the control of different ownership domains

— provides a uniform means to offer, discover, interact with and use

capabilities to produce desired effects consistent with measurable
preconditions and expectations

/v

AARHUS UNIVERSITET
« The next step? A successful step?
« Wikipedia (2018)

A microservice is a software development technique—a variant of the service-oriented architecture (SOA) architectural style that
structures an application as a collection of loosely coupled services. In a microservices architecture, services are fine-grained and the
protocols are lightweight. The benefit of decomposing an application into different smaller services is that it improves modularity. This
makes the application easier to understand, develop, test, and become more resilient to architecture erosion ' It parallelizes

Microservices

development by enabling small autonomous teams to develop, deploy and scale their respective services independently [It also allows
the architecture of an individual service to emerge through continuous refactoring [F! Microservices-based architectures enable
continuous delivery and deployment 114

« Keywords

— Loosely coupled, fine-grained, lightweight protocols, autonomous
teams, independent deployment and scaling, continuous delivery.

CS@AU Henrik Baerbak Christensen 6

VeV So — Our Take

AARHUS UNIVERSITET
« We will look at two takes on the concept...

— James Lewis and Martin Fowler

— Sam Newman

* And compare ©

CS@AU Henrik Baerbak Christensen 7

/v

AARHUS UNIVERSITET

L ewis and Fowler

/v Micro Services

AARHUS UNIVERSITET
« The next step? A successful step?

Microservices

a definition of this new architectural term

The term "Microservice Architecture"” has sprung up over the last few years to describe a
particular way of designing software applications as suites of independently deployable
services. While there is no precise definition of this architectural style, there are certain
common characteristics around organization around business capability, automated
deployment, intelligence in the endpoints, and decentralized control of languages and

data. In short, the microservice architectural style is an approach to
developing a single application as a suite of small services, each
running in its own process and communicating with lightweight
mechanisms, often an HTTP resource APIL These services are built
around business capabilitics and independently deployable by fully
automated deployment machinery. There is a bare minimum of
centralized management of these services, which may be written in
different programming languages and use different data storage

technologies.

CS@AU Henrik Baerbak (_ 9

- James Lewis and Martin Fowler (2014)

/v

AARHUS UNIVERSITET

A monolithic application puts all its
functionality into a single process...

... and scales by replicating the
monolith on multiple servers

oV oV

9 9
We e

oV oV

CS@AU

Overview

A microservices architecture puts 9

each element of functionality into a

separate service...

... and scales by distributing these services
across servers, replicating as needed.

@ ®|||®

olle® &

Henrik Baerbak Christensen

10

/v

AARHUS UNIVERSITET

CS@AU

Key Properties

[_ Lewis, Fowler }u

Defining Characteristics —

Componentization via Services

Organized around Business Capabilities

Products, not Projects
Smart endpoints and dumb pipes

Decentralized Governance

Decentralized Data Management

Infrastructure Automation

Design for Faillure

Evolutionary Design

Henrik Baerbak Christensen 11

/v Component = Service

AARHUS UNIVERSITET

« Component = unit of software that is independently
replaceable and upgradeable...

e Services are the components of a microservice arch.
— Out-of-process, communicate using RPC or web service

— Independently deployable
 |.e. smaller units of deployment

— Explicit interface
» Leads to lower coupling

« Service is not necessarily single process...
— Often it is (app+db) deployed together...

Y Organized around Business

AARHUS UNIVERSITET
« Classic Organization

Microservice Organization

A

w 3 w

o W

E% F

7z @
S~

- . - .
@ PR A £ |
g | ! ' ' | | ' '
: . * P ' .E . * s
peRs g’i 2 S R x : : . | N -
7 W ’ S
2 ™ / ™
Ml S
Siloed functional teams... ... lead to silod application architectures.
Because Conway's Law
[« i | team: ... organised around capabilities
Because Conway's Law

Any organization that designs a system (defined broadly) will produce a design whose
structure Is a copy of the organization's communication structure.

— Melvyn Conway, 1967

CS@AU Henrik Baerbak Christensen 13

eV Products, not Projects

AARHUS UNIVERSITET

» Classic project organization

— Develop piece of software, upon completion, hand over to
maintenance, project dissolve...

* Product organization

— You build it, you run it
« That is the team designs, builds, tests, deploys, and maintains it...

— Full lifecycle ownership

/v Smart endpoints, dumb pipes

AARHUS UNIVERSITET

* The logic lives in the services, not in the communication
— CC viewpoint: Smart Components, dumb Connectors
— Opposite:
» Enterprise service bus
— Allows filtering, processing, of messages while being transmitted

« Typical message protocols
— HTTP / REST Api’s
— Lightweight messaging
* RabbitMQ, etc., with no message processing
— GraphQL (?)

eV Decentralized Governance

AARHUS UNIVERSITET

« Choice of language and technology stack is open

— Use C++ for that performant service; choose Node.js for a reports
service

— Opposite: Company-wide adoption of Microsoft tech stack

« Often companies adopt building useful tools for other
teams with similar problems

« Often companies do restrict tech stack though
— Netflix (as | recall) insists on JVM based tech stack only

/v Decentralized Data Management

AARHUS UNIVERSITET

* |s decentralized
— Each service has its own storage

%

1
1
1
|
" —
| —

fE % | 1 —

v | :

£ 9 | |
[

] :
L EE | (] (] (=
| A

monolith - single database microservices - application databases

CS@AU Henrik Baerbak Christensen 17

/v Decentralized Data Management

AARHUS UNIVERSITET

* |s decentralized
— Each service has its own storage

%38

L]
I
1
1
I
I
I
[
£ x | -
[
il |
9 | |
I
I
[
| .
=
1
1
1
BEER|| (@
1
monolith - single database microservices - application databases

CS@AU Henrik Baerbak Christensen 18

/v Decentralized Data Management

AARHUS UNIVERSITET
« Transaction handling is highly difficult in such a context

- * é &
 Emphasis is on =

e 4
eventual consistency % ; // \\
¥ == ==
« SAGA pattern @|) | =

monalith - single database

* My humble opinion
— If you need transactions, why not use a DB that supports it?

eV Infrastructure Automation

AARHUS UNIVERSITET

« Continous Delivery

— Deployment Pipeline: An automated implementation of your
application’s build, deploy, test, and release process.

Agile Manifesto:
Highest priority is to satisfy the customer

through early and continuous delivery of
valuable software.

compile, unit acceptance integration user acceptance performance
and test test test test
functional test

S—tip——tip——ie——i——
=EEEESE

CS@AU Henrik Beerbak Christensen 20

deploy to
production

eV Infrastructure Automation

AARHUS UNIVERSITET

—

- N\Xo

-

/NN

<[l
<[l
<[l

monalith - multiple modules in the same process microservices - modules running in different processes

One repo / multiple repos ?

CS@AU Henrik Baerbak Christensen 21

/v ... And Design for Failure!

AARHUS UNIVERSITET

Fault Tolerance is a Requirement, Not a Feature

The Netflix API receives more than 1 billion incoming calls per day which in turn fans out to several billion
outgoing calls (averaging a ratio of 1:6) to dozens of underlying subsystems with peaks of over 100k
dependency requests per second.

App Container (T

Services accessed over network

N = "'x..y/i —

I Dep ndencyB NDependencyC I)
> o] [omme] [omemr] < Nygard: Every remote call is an

\ — _ Z . integration point. Every

\Jl l y K IDependencyLI

integration point must be guarded

» [Soponsohor] [(oopons ,~| [Bevencency | z

(w to allow safe failure modes.

This all occurs in the cloud across thousands of EC2 instances.

CS@AU Henrik Beerbak Christensen 22

/v Evolutionary Design

AARHUS UNIVERSITET

« Key property of a component is the notion of independent
replacement and upgradeabillity.

« Build replaceable and upgradeable units, give opportunity
for more granular release planning

« Evolution through replacing/scraping individual service
rather than big replacements of whole monolith

/v

AARHUS UNIVERSITET

Newman

/v

AARHUS UNIVERSITET
« Newman’s groundbreaking and highly precise definition.

Definition

Microservices are small,

autonomous services that work together.

Definition: Object-orientation (Responsibility)

An object-oriented program is structured as a community of interacting
agents called objects. Each object has a role to play. Each object provides

a service or performs an action that is used by other members of the
community.

Budd (2002)

CS@AU Henrik Beerbak Christensen 25

/v

AARHUS UNIVERSITET

« Small, focused on doing one thing well
— Service boundaries are business boundaries
— Explicit boundaries (out-of-process communication)
— Small enough and no smaller
« Boundary: team size, rewrite time
« Autonomous
— Separate entity
— Communication is network calls (avoid tight coupling) (hm...)
— Expose API (technology-agnostic)

— Decoupling: can | change this service without changing any
other?

Defining Characteristics

/v Key Benefits

AARHUS UNIVERSITET

« Technological Heterogenity
— Each service may use its own technology stack
» Pick the right tool for each job
— May choose data storage techology independently

— Quick technology adaption
» Lower risk by selecting new technology for given service

— Counterpoint
* Overhead in maintaining many technologies

« Company ‘Technology Decisions’ may restrict that
— NetFlix and Twitter: Only JVM based systems

/v Key Benefits

AARHUS UNIVERSITET
* Resilience Qo
— Nygard (2017) pattern: Bulkhead '
— Bulkhead: Partitioning a system so ittt

failures in one part does not lead to system failure
— Handle failure of services and degrade functionality accordingly

— Counterpoint

« Highly distributed systems have a lot of failure modes that needs to
be addressed

* Nygard’s book contains essential hard-earned tactics...

CS@AU Henrik Baerbak Christensen 28

/v Key Benefits

AARHUS UNIVERSITET

« Scaling
— Just scale the microservice that needs scaling
» Opposite monolith system: all things scale together
— Utilize on-demand provisioning of VMs to scale automatically

« Ease of Deployment

— A one-line bug fix in one service only means one service to
redeploy

* And rollback is also much easier

* Opposite monolith system: full redeployment of monolith
— Fear of breaking stuff => changes accumulate

/v Key Benefits

AARHUS UNIVERSITET

« Qrganization Alignment

— Small teams on small service — align organization and
architecture

« Smaller teams on smaller code bases are more efficient
« Composabillity
— Functionality consumed in different ways for different purposes
 Uhum... | am a bit skeptical...
* Optimizing for Replacability
— Out of date services are easier to replace because its small size
» Opposite: That monster COBOL system everybody is afraid of...

/v

AARHUS UNIVERSITET

CS@AU

Comparison

Lewis vs Newman

Henrik Baerbak Christensen

31

/v

AARHUS UNIVERSITET

-
L Microservices

| Lewis, Fowler

Defining Characteristics -

Componentization via Services

Organized around Business Capabilities

Products, not Projects

Smart endpoints and dumb pipes

Decentralized Governance

Decentralized Data Management

Infrastructure Automation

Design for Failure

Evolutionary Design

CS@AU

Henrik Baerbak Christensen

/

Overview

= Newman

Y

|
~— Defining Characteristics

| Small, Do One Thing Well
| Autonomous

| Benefits |

Technological Heterogenity

Resilience
Scaling
Ease of Deployment

Organization Alignment

Composability
| Optimizing for Replacability

32

/v

AARHUS UNIVERSITET

Wikipedia keywords:
Loosely coupled, fine-grained,
lightweight protocols, autonomous

teams, independent deployment and / ‘\\
scaling, continuous delivery. ‘

/
| Lewis, Fowler &’
- 6'
|‘ Defining Characteristics }

Componentization via Services

Microservices J

Comparing

> Newman)

L

o

\.—:'Defining Characteristics

—r Small, Do One Thing Well

Organized around Business Capabilities

Products, not Projects

Smart endpoints and dumb pipes
Decentralized Governance
Decentralized Data Management

Infrastructure Automation -

— Autonomous

| Benefits |

- Technological Heterogenity

. Resilience
_ Scaling

Design for Failure

Evolutionary Design -

CS@AU Henrik Beerbak Christensen

~ Ease of Deployment

- Organization Alignment
_ Composability
. Optimizing for Replacability

33

